MICROSOFT

utility sefftware
manual

Microsoft
Utility Software Manual

w

CONTENTS
SECTION 1 MACRO-80 Assembler o o« + o « o o « o &
1.1 Format of MACRO-80 Commands' e o o o ®
1.1.1 MACRO-80 Command Strings . . .
1 - 1 . 2 MACRO"'SO SWitCheS 3 . . 3 . . .
1.2 . Format of MACRO-80 Source Files . . .
1.3 Assembler Features . « « o« « « o o o o
1.3.7 Names « ¢ « o o o o o o ...
1.3.2 Constants « « « ¢ ¢ o ¢« o« 's o .
1 3 3 Labels e e e o e o o s e e e e
1.3.4 Operators « « « « o o o o o o o
1.3.5 Address EXpressions « « « . . .
1.3.6 RemMarks o o s o o o o o o o o
1.3.7 Statement FOrm o« « . o« o o o .
1.3.8 Expression Evaluation « « . . .
1.3.9 Opcodes as Operands . « « . . .
1.4 Pseudo Operations « « « o o o o o . .
1.4.1 Define Byte « « « o & o o . . .
1.4.2 Dpefine Character o«
1.4.3 Define Space e o o
1.4.4 Dpefine Word * ¢ e 4
N\ 1.4.5 Program Termination . e o o o W
' 1.4.6 Terminated Conditional Assembly
1.4.7 Define Entry Points ., , ., . . .
1.4.8 Define Equivalence c e o ¢ o W
1.4.9 Define External s e 4 e o o o .
1.4.10 False Conditional Assembly . .
1.4.11 True Conditional Assembly ., . .
1.4.12 Dpefine Origin ., . . . ,
1.4.13 Page Break . . c e ¢ o o s & W
1.4.14 Set e e s o o o &
1.4.15 Title . ., * e o e o W
1.4.16 Memory Segment Specification .
1.5 Notes « e o
1.6 Sample Assembly o .
1.7 MACRO-80 Errors .« « o o« o« o . . o o
1.8 Cross Reference Facility « + « « . . .
SECTION 2 LINK-BO Linking Loader ® e ¢ o s o o o
2.1 Format of LINK-80 Commands . . . o o
2.1.1 LINK-80 Command Strings
2.1.2 LINK-80 Switches . e e s o & o
2,2 Sample Link * e e o o
2.3 Format of LINK Compatible Object Files
2.4 LINK-8 ror €8 ¢ 4 ¢ 4o e o o
‘ s 0 Er Messages T

Program Break Informationv o« .

WO WOOM~IIIOOUI WL

19

19
19
20
22
22
24
26

SECTION 3

wwww
.
Ul W

SECTION 4

[S
e o

LIB-80

IAIB"BO
3.1.1

LIB-80
LIB-80
Sample

Summary of Switches and Syntax

Library Manager

Commands =«
Modules .« . =«
Switches .« .
Listings =« =
LIB Session .

Operating Systems .

CP/M .

DTC Microfile . . .
Altair DOS . « « o o

ISIS-I1

.

27

27
27
29
29
30
30

31

31
33
35
37

Microsoft Utility Software

1.1

1.1.1

Page 5

SECTION 1

MACRO-80 Assembler

Format 9£ MACRO-80 Commands

MACRO-80 Command Strings

To run MACRO-80, type M80 followed by a carriage
return. MACRO-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it is ready to accept commands. The
format of a MACRO-80 command string is:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be
written.

list~-dev:
The device on which the program listing is written.

source-dev:

The device from which the source-program input to
MACRO-80 is obtained. 1If a device name is omitted,
it defaults to the currently selected drive.

filename.ext

The filename and filename extension of the object
program file, the 1listing file, and the source
file. Filename extensions may be omitted. See
Section 4 for the default extension supplied by
your operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:

*=SOURCE.MAC Assemble the program
SOURCE.MAC and place
the object in SOURCE.REL

*,LST:=TEST Assemble the program
TEST.MAC and list on
device LST

Microsoft Utility Software Page 6

*SMALL,TTY:=TEST Assemble the program
TEST.MAC, place the

object in SMALL.REL and
list on TTY

1.1.2 MACRO-80 Switches

A number of different switches may be given in the
MACRO-80 command string that will affect the format
of the listing file. Each switch must be preceded
by a slash- (/):

Switch Action

i
‘

0 Print all listing addresses, etc. in
octal. (Default for Altair DOS)

H Print all listing addresses, etc. in
hexadecimal.
(Default for non-Altair versions)

I Assemble Zo30 Mpemanit € (D fauttfon FOTO opev. spsfems)
R Force generation of an object file.
L Force generation of a listing file.
C Force generation of a cross reference
file. '
Examples:) ’,,'r. systemsS
*=TEST/L Compile TEST.MAC with object

file TEST.REL and listing
file TEST.LST

*,AST ,LAST/C=MOD1 Compile MOD1.MAC with object
file LAST.REL and cross
reference file LAST.CRF for
use with CREF-80
(See Section 1.8)

1.2 Format 9£ MACRO-80 Source Files

In general, MACRO-80 accepts a source file that 1is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

The assembler outputs a module name to the loader.
This module name consists of the first six
~haracters of the title if a TITLE statement is
included. Tf no TITLE statement is included, the
+odule name 1s created from the source file name.

Microsoft Utility Software

Page 7

1.3 Assembler Features
The features of the MACRO-80 assembler are
described briefly below.
1.3.1 Names
All names are 1-6 characters. The first character
is an alpha character (A-Z) or $. The remaining
characters may be alphanumeric (A-Z, 0-9) or . or
$ or ? or @. Names followed immediately by two
number signs with no intervening blanks (e.g.
NAME##) are classified as external. This type of
name is an alternative to the program statement
EXT NAME
or
EXTRN NAME
1.3.2 Constants

a., Decimal:

b. Octal:
c. Hex:
d. Binary:

e. Character:

Numbers consisting of decimal

digits and having no leading zero.
The allowable range 1is 65535 to
-65535,

Numbers consisting of octal digits
and having a leading zero or a
trailing Q or O. The allowable
range is 0177777 to -0177777.

Numbers consisting of one to four

hexadecimal digits and having the
form x'hhhh'. One-digit or three-
digit values are treated as though

zero were to the left (i.e., X'A'
and X'OA' are the same). The
allowable range is X'FFFF' to
~X'FFFF'. Numbers consisting of

from one to four hexadecimal digits
immediately followed by the suffix
H (e.g., hhhhH) are also allowed.

Numbers consisting of a string of
binary digits (0's and 1's)
followed by a B. (e.g., 101011B)

One or two ASCII characters
preceded and followed by quotation

marks (i.e., "a" or "BC" or 'BC').
The delimiters may be either single
quotes (') or double quotes ("),

but the starting and end delimiters

Microsoft Utility Software Page 8

1.3.4

1.3.8

must be identical. Whenever one
type of quote 1is used as a
delimiter, the other type of quote
is allowed as a character.
Two-character strings are stored in
low order byte/high order byte
sequence. See Section 1.4.4.

Labels
A label is a name that does not contain an imbedded
space and 1is terminated by a colon (:). Labels

alone on a line with no further opcode or pseudo-oOp
are allowed. N

OEerators

An operator consists of an 8080 mnemonic or one of
the pseudo-operations described in Section 1.4.

Address Expressions

An address expression uses the current assigned
address of a name or the 16-bit value of a constant
to form a 16-bit value which, after the expression
is evaluated, 1is truncated to the field size
required by the operator.

Remarks

A remark always begins with a semicolon (;) and
ends with a carriage return. A remark may be a
line by itself or it may pe appended to a line that
contains a statement.

Statement Form

A statement consists of an optional label followed
by an operator, followed by as many address
expressioks as the operator requires, followed by
an optional remark, and terminated by a carriage
return. It is not necessary that statements begin
in column 1. Multiple blanks or tabs may be used
to improve readability (except inside character
constants or character strings) .

Expression Evaluation

Operator precedence during expression evaluation 1is

Microsoft Utility Software Page 9

as follows:

Parenthesized expressions

HIGH, LOW
, /., MOD, SHL, SHR
+, - (unary and binary)

Relational Operators EQ, LT, LE, GT, GE, NE
Logical NOT

Logical AND

Logical OR, XOR

The Relational, Logical and HIGH/LOW operators must
be separated from their operands by at least one

space. '
]

Byte Isolation Operators

The byté isolation operators are as follows:

HIGH Isolate the high order 8 bits
of a 16-bit value

LOW Isolate the low order 8 bits
of a 16-bit wvalue

Example:
IF HIGH VALUE EQ 0

The above IF pseudo-op determines whether the high
order byte of VALUE is zero.

Relational Operators

The relational operators are as follows:

EQ Equal

NE Not equal

LT Less than

LE Less than or equal

GT Greater than

GE Greater than or equal

These operators yeild a true or false result. They
are commonly wused in conditional IF pseudo-ops.
They must be separated from their operands by
spaces., Example:

IF LABEL1 EQ LABEL2

The above pseudo-op tests the values of LABEL1 and
LABEL2 for equality. If the result of the
comparison is . true, the assembly language code
following the IF pseudo-op is assembled, otherwise

the code is 1gnored

Microsoft Utility Software Page 10

1.3.9 Opcodes as Operands

8080 opcodes are valid one-byte operands. Note
that only the first byte is a valid operand. For
example:

MVI A, (JMP)

ADI (CPI)

MVI B, (RNZ)

CP1I (INX H)

ACIT (LXI B)

MVI - C, (MOV A,B)

Errors will be generated if more than one byte 1is
included in the operand -- such as (CPI 5), (LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses.

1.4 Pseudo Operations

1.4.1 Define Byte

DB E1,E2,...,En
or

DB "Character String"
or

DB ‘Character String'
Each of the address expressions ET, E2,...En 1is
evaluated and stored in n successive bytes. One-
and two-character strings can be used 1in any
expression. A string that is longer than two

characters may only be used as a string.

Either single or double gquotes may be used as
character string delimiters, but the starting and

end delimiters must be identical. It is
permissible to use the delimiter gquotes as
characters, but the gquote marks must appear twice
for every character occurrence desired. For
example:

DB "I am ""great"" today"

will store
I am "great" today

Each character in the character string is stored as
one byte with its high-order bit set to zero.

Microsoft Utility Software Page 11

1.4.2

1.4.3

1.4.4.

1.4.5

Define Character

DC "Character String"”

Only double quotes may be used as character string
delimiters, and double gquotes may not be used as
characters.

Each character in the character string is stored as
one byte with its high-order bit set to zero except
for the last byte which has its high-order bit set
to one.

Define Space '

DS E
The address expression E is evaluated and that many
bytes of space are allocated. All names used in E
must be defined prior to the DS statement.

Define Word

Each address expression is evaluated and stored as
n successive words. Example:

DW 'AB'

Two-byte values are stored in memory in low order
byte/high order byte sequence. The ASCII code
representation for character B is stored, then the
character A is .stored.

On the object code listing however, the printout
for all two-byte values is in high order byte/low
order byte sequence, for easier reading.

Program Termination

END E

This statement is the 1last statement of each
program. The optional address expression E gives
the program execution address. If E evaluates to
absolute zero, it is equivalent to no execution
address.

Microsoft Utility Software Page 12

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

Terminated Conditional Assembly

ENDIF

Terminates conditional assembly initiated by a
previous IFF or IFT.

Define Entry Points

ENTRY N1, N2, ..., Nn
or '
PUBLIC N1, N2, ..., Nn
¥
The names N1, N2, ..., Nn are entry points from
external programs and act as names for the program
being assembled. The names must appear in an ENTRY

or PUBLIC statement prior to their appearance as a
label.

Define Eguivalence

Label EQU E

The label of the EQU statement is assigned the
address given by address expression E. The label
is required and must not have previously appeared
as a label. All names used in E must be defined
prior to the EQU statement. .

Define External

EXT " N1, N2, ..., Nn
or
EXTRN N1, N2, ..., Nn

The names N1, N2, ..., Nn are defined to be
external references and may not have been used as a
label. Names may also be defined as external by
using NAME##. See Section 1.3.1.

False Conditional Assembly

IFF E

The address expression E is evaluated and if it is
False (=0), all statements down to the next ENDIF
are assembled. If E is True (not =0), the
statements are not assembled.

Microsoft Utility Software Page 13

1.4.117 True Conditional Assembly

IFT E
or
IF E

The address expression E is evaluated and if it is
True (not =0), all statements down to the next
ENDIF are assembled. If E 1is False (=0), the
statements are not assembled. Unlimited nesting of
conditionals is allowed.

1.4.12 Define Origin

ORG E

The address expression E 1is evaluated and the
assembler assigns generated code starting with that
value. All names used in E must be defined prior
to the ORG statement, and the mode of E must not be
external.

1.4.13 Page Break

PAGE

A page break will occur on the listing, The PAGE
statement will not list and code is not generatcd.
If a TITLE statement has been included, the title
(up to 125 characters) will be printed at the top
of the page.

1.4.14 Set

Label SET E

The label of the SET statement 1is assigned the

address given by expression E. The 1label 1is
required and must not have previously appeared as a
label. All names used in E must be defined prior

to the SET statement.

The difference between the SET and EQU statements

. is that SET allows redefinition of label values.
Redefinition of a label by an EQU statement will
result in an error.

Microsoft Utility Software Page 14

1.4.15 Title
TITLE ICOMP INTEGER COMPARE ROUTINE

TITLE followed by a title of up to 125 characters

is allowed. This title will appear at the top of
each page. The title must be terminated by a
carriage return. The module name that the

assembler outputs to the loader is taken from the
first Six characters that follow the TITLE
statement. If no TITLE statement is included, the
assembler outputs to the loader a module name that
is taken from the file name.

1.4.16 Memory Segment Specification

It is possible to specify that sections of a
program be loaded in absolute, code relative or
data relative segments of memory. The pseudo-ops
are:

ASEG For loading in an absolute
segment of memory

DSEG For loading in a data relative
segment of memory

CSEG For loading in a code relative
segment of memory

One of the possible uses of these pseudo-ops is to
specify RAM and ROM segments of memory. The data
relative segment would be RAM, and the code
relative segment would be ROM.

After an ASEG, CSEG, or DSEG pseudo-op is
encountered, all following code is loaded in that
area until a subsequent ASEG, CSEG or DSEG
pseudo~-op is encountered.

If none of these three pseudo-ops is specified, the
default condition 1is to 1load everything code
relative, .

Additional flexibility in relocating code is
possible through wuse of the ORG pseudo-op, which
sets the value of the appropriate program counter.
For example:

DSEG Sets the data relative program
ORG 0 counter to a value cof 50

Microsoft Utility Software Page 15

1.5

NOTE

1. The Intel operands PAGE and INPAGE will
generate expression errors when used
with CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler
ignores the operands.

2., In version 3.0 of the MACRO-80
Assembler, references to a particular
external symbol may not be made in more
than one memory segment. For example,
an external symbol EXTI1 might be
-referenced in the code relative
segment, external symbols EXT3, EXT4
might be referenced in the data
relative segment, but none could be
referenced in more than one memory
segment., (This restriction will be
removed in a later release of the
MACRO-80 Assembler.)

Refer to Section 2, LINK-80 Linking Loader,
to determine how these segments are placed
in specific areas of memory.

Notes

1.

2.

A dollar sign ($) indicates the value of the
location counter at the start of the statement.

When the assembler is entered, the origin is
assumed to be Relative-0,

Address expressions used in the conditional
assembly pseudo-operations IFF . and IFT must
have all names defined prior to the use in the
expression, and the expression must be
Absolute.

Address expressions whose final mode 1is other
than Absolute must generate assembly data that
is stored as two bytes.

The following names are defined by the
assembler to have the indicated Absolute

values.
A=7 B=0 C=1 D=2 E=3
H=4 L=5 M=6 SP=6 " PSW=6

Microsoft Utility Software

1.6

A>MB80

Sample Assembly

*EXMPL1,TTY :=EXMPL1

0oo0o0*

0000"
0001°
0002"'
0003'

0004'
0006"

0007'

0008"'
0009
000A'

000B'

0oo0C'
00O0F'

0010"
0011!
0012
0013
0014"

CSL3

MACS80 3.

7E
23
66
6F

06 03
AF

29
17
85
6F
05

C2 0006
EB

73
23

72
C9

MAC80 3.

0000'

0

0

LOOP

PAGE

00100
00200
00300
00400
00450
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300
02400
02500

02600

02700
02800
02900

PAGE

0006"'

Page 16

1

;CSL3(P1,P2)
;SHIFT P1 LEFT CIRCULARLY 3 BITS
;RETURN RESULT IN P2

ENTRY CSL3
;GET VALUE OF FIRST PARAMETER
CSL3:

MOV A,M

INX H

MoV H,M

MOV L,A
; SHIFT COUNT

MVI B,3
LOOP: XRA A
;SHIFT LEFT

DAD H
:ROTATE IN CY BIT

RAL

ADD L

MOV L,A
; DECREMENT COUNT

DCR B
;ONE MORE TIME,

JINZ LOOP

XCHG
: SAVE RESULT IN SECOND PARAMETER

MOV M,E

INX H

MOV M,D

RET

END

|

Microsoft Utility Software Page 17

1.7 MACRO-~B0 Errors

MACRO-80 errors are indicated by a one-character
flag in column one of the 1listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a 1list of the MACRO-80
Error Codes:

Code Meaning

Too many ENDIFs

Bad octal or hex or binary digit
Expression error \
No label in EQU

Label or symbol defined more than once
Name too long

Bad operator (opcode)

Illegal field termination

Undefined symbol

Missing second field for opcode

Phase error

Missing or incorrect character string
delimiter

owNvCBOZIEMEMUN

1.8 Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80. In order to generate a cross reference
listing, the assembler must output a special
listing file with embedded control characters. The
MACRO-80 command string tells the assembler to
output this special listing file. /C is the cross
reference switch. When the /C switch is
encountered in a MACRO-80 command string, the
assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
"TEST.CRF

*T,U=TEST/C Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, it is necessary to
call the cross -e“nrerce facility by typing CREF80.

r«)

Microsoft Utility Software Page 18

The command string is:
*1isting file=source file

The default extension for the source file is .CRF.
The /L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are:

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

*T=TEST Examine file TEST.CRF and
generate a cross reference
listing file T.,LST.

Cross reference listing files differ from ordinary
listing files in that:

1. Each source statement is numbered.

2. At the end of the 1listing, variable names
appear in alphabetic order aleng with the
numbers of the 1lines on which they are
referenced or defined.

Microsoft Utility Software Page 19

SECTION 2

LINK-80 Linking Loader

2.1 Format of LINK-80 Commands

2.1.1 LINK-80 Command Strings

To run LINK-80, type L80 followed by a carriage
return, LINK-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it is ready to accept commands. Fach
command to LINK-80 consists of a string of
filenames and switches separated by commas:

objdevi:filename.ext/switchl,objdev2:filename.ext,...

If the input device for a file is omitted, the
default is the currently logged disk. If the
extension of a file is omitted, the default is
.REL. After each line is typed, LINK will load or
search (see /S below) the specified files. After
LINK finishes this process, it will 1list all
symbols that remained undefined followed by an
asterisk.

Example:
*MAIN
DATA 0100 0200
SUBR1* (SUBR1 is undefined)
DATA 0100 0300
*SUBR1
*/G (Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filenames followed by /G (begin execution). Before
execution begins, LINK-80 will always search the
system library (FORLIB.REL or COBLIB.REL) to
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed by
/S to the end of the loader command string.

2.1.2 LINK-80 Switches

Microsoft Utility Software

Page 20

A number of switches may be given in the LINK-80
command string to specify actions affecting the

loading process.
These switches are:

slash (/).
Switch

R

E or E:Name

G or G:Name

Each switch must be preceded by a

Action

Reset. Put loader back in its
initial state. Use /R 1if you
loaded the wrong file by mistake
and want to restart. /R takes
effect as soon as it is encountered
in a command string.

Exit LINK-80 and return to the

Operating System. The system
library will be searched on the
current disk to satisfy any
existing undefined globals. The
optional form E:Name (where Name is

" a global symbol previously defined

in one of the modules) uses Name
for the start address of the
program. Use /E to load a program
and exit back to the monitor.

Start execution of the program as
soon as the current command linc
has been interpreted. The system
library will be searched on the
current disk to satisfy any
existing undefined globals if they
exist. Before execution actually
begins, LINK-80 prints three
numbers and a BEGIN EXECUTION
message. The three numbers are the
start address, the address of the
next available byte, and the number
of 256-byte pages used. The
optional form G:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program,

If a <filename>/N is specified, the
program will be saved on disk under
the selected name (with a default
extension of .COM for CP/M) when a
JE or /G is done. A jump to the
start of the program is inserted if
needed so the program can run
properly (at 100H for CP/M).

Microsoft Utility Software Page 21

P and D

/P and /D allow the origin(s) to be
set for the next program loaded.
/P and /D take effect when seen
(not deferred), and they have no
effect on programs already loaded.
The form is /P:<address> or
/D:<address>, where <address> is
the desired origin in the current

typeout radix. (Default radix for
non-MITS versions is hex. /O sets
radix to octal; /JH to hex.)

LINK-80 does a default /P:<link
origin>+3 (i.e., 103H for CP/M and
4003H for ISIS) to leave room for
the jump to the start address.

NOTE: Do not use /P or /D to 1load
programs or data into the locations
of the loader's jump to the start
address (100H to 102H for CPM and
2800H to 2802H for DTC), unless it
is to load the start of the program
there. If programs or data are
loaded into these locations, the
jump will not be generated.

If no /D is given, data areas are
loaded before program areas for
each module. If a /D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,FO0O

Data 200 300
* /R

*/pP:200 /D:400,F00
-Data 400 480
Program 200 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa-
tion is only printed if a /D has
been done. Otherwise, the program
is stored in the data area.

List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Microsoft Utility Software

2,2

Page 22

is only printed if a /D has been
done. Otherwise, the program is
stored in the data area.

S Search the filename immediately
preceding the /8 in the command
string to satisfy any undefined

globals.
Examples:

* /M List all globals

*MYPROG, SUBROT ,MYLIB/S
Load MYPROG.REL and SUBROT.REL and

then search MYLIB.REL to satisfy
any remaining undefined globals.

*/G Begin execution of main program

Sample Link

A>L8O
*EXAMPL, EXMPL1/G
DATA 3000 30AC

[304F 30AC 49]
[BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112

112 896

A>

Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation

of the package.

LINK-compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

Microsoft Utility Software ‘ Page 23

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
‘base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

1 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx vy zzz + characters of symbol name
A field B field

xxXx Four-bit control field (0-15 below)

vy Two-bit address type field

z22z Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name ‘
Reserved for future expansion

W N O

Microsoft Utility Software Page 24

4

Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5 Define COMMON size
6 Chain external (A is head of address chain,
B is name of external symbol)
7 Define entry point (A is address, B is name)
8 Reserved for future expansion
The following special LINK items have an A field
only:
9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.
10 Define size of Data area (A 1is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,
replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.
13 Define program size (A is size)
14 End program (forces to byte boundary)
The following special Link item has neither an A nor
a B field:
15 End file
2.4 LINK-80 Error Messages

LINK-80 has the following error messages:

?No Start Address A /G switch was issued,

but no main program
had been loaded.

?Loading Error The last file given for input

was not a properly formatted
LINK-80 object file.

?0ut of Memory Not enough memory to load
program.

?Command Error Unrecognizable LINK-80
command.

?<file> Not Found <file>, as given in the command

string, did not exist.

Microsoft Utility Software

Page 25

$2nd COMMON Larger /XXXXXX/

The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change COMMON block
definitions.

$Mult. Def. Global YYYYYY

e

gOverlaying [Program

Data

?Intersecting |Progra
Data

?Start Symbol - <name>

More than one definition for

the global (internal) symbnl

YYYYYY was encountered during
the loading process.

] Area

A /D or /P will cause already
loaded data to be destroyed.

nﬂ Area

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con-
verted to a current value
since it is in the area
intersection.

- Undefined

After .a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?

Below

?Can't Save Object File

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a

Y <cr> is given, LINK-80
will move the area and con-
tinue. 1If anything else is
given, LINK-80 will exit.
In either case, if a /N was
given, the image will already
have been saved,

A disk error occurred when
the file was being saved.

Microsoft Utility Software Page 26

2,5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is less
than the program area, the user must be
sure there 1is enough room to keep the
program from being destroyed. This 1is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate

disk buffers and FCB's.

Microsoft Utility Software

Page 27

SECTION 3

LIB-80 Library Manager
(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to

other operating systems in future releases of FORTRAN-80 and
COBOL-80.

3.1

3.1.1

LIB-80 Commands

To run LIB-80, type LIB followed by a carriage
return., LIB-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it 1is ready to accept commands. Each
command in LIB-80 either lists information about a
library or adds new modules to the library under
construction.

Commands to LIB-80 consists of an optional
destination filename which sets the name of the
library being created, followed by an equal sign,
followed by module names separated by commas. The
default destination filename is FORLIB.LIB.
Examples:

*NEWLIB=FILE1 <MOD2>, FILE3,TEST

*SIN,COS,TAN,ATAN

Any command specifying a set of modules
concatenates the modules selected onto the end of
the last destination filename given. Therefore,

*FILE1,FILE2 <BIGSUB>, TEST
is equivalent to
*FPILE1

*FILE2 <BIGSUB>
*TEST

Modules

A module is typically a FORTRAN or COBOL

subprogram, main program or a MACRO-80 assembly
that contains ENTRY statements.

The primary function of LIB-80 is to concatenate
modules in LREL files to form a new library. In

Microsoft Utility Software Page 28

order to extract modules from previous libra;ies or
.REL files, a powerful syntax has been Qev1sed to
specify ranges of modules within a .REL file.

The simplest way to specify a module within a file
is simply to wuse the name of the module. For

example:
SIN

But a relative gquantity plus or minus 255 may also
be used. For example:

SIN+1

specifies the module after SIN and
SIN-1

specifies the one before it.

Ranges of modules may also be specified by using
two dots:

«+SIN means all modules up to and including
SIN.

SIN.. means all modules from SIN to the end
of the file,

SIN..COS means SIN and COS and all the
modules in between.

Ranges of modules and relative offsets may also be
used in combination:

SIN+1.,.C0OS-1
To select a given module from a file, use the name
of the file followed by the module(s) specified
enclosed in angle brackets and separated by commas:
FORLIB <SIN..COS>
or
MYLIB.REL <TEST>
or
BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then all

Microsoft Utility Softwarec Page 29

the modules in the file are selected:)
TESTLIB.REL
3.2 LIB-80 Switches
A numbgr of switches are used to control LIB-80
operation. These switches are always preceded by a
slash:

/0 ‘Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throw away the library under N
construction and start over.

JE Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

/R Rename - same as /E but does not exit
to CP/M on completion.

3.3 LIB-80 Listings
To list the contents of a file in cross reference
format, use /L:

*FORLIB/L

When building libraries, it is important to order
the modules such that any intermodule references
are "forward." That is, the module containing the
global reference should physically appear ahead of
the module containing the entry point. Otherwise,
LINK-80 may not satisfy all global references on a
single pass through the library.
Use /U to list the symbols which could be undefined N

in a single pass through a library. If a module in
the library makes a backward reference to a symbol
in another module, /U will 1list that symbol.

Example:

Microsoft Utility Software Page 30

N
*SYSLIB/U

NOTE: Since certain modules in the standard
FORTRAN and COBOL systems are always force-loaded,
they will be listed as undefined by /U but will not
cause a problem when loading FORTRAN or COBOL
programs.

Listings are currently always sent to the tgrminal;
use control-P to send the listing to the printer.

3.4 Sample LIB Session

A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EXP :

*TRANLIB.LIB/U

*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

* /E
A>

3.5 Summary of Switches and Syntax

/0 Octal - set listing radix

/H Hex - set listing radix

/U List undefineds

/L List cross reference

/C Create - start LIB over

/E Exit - Rename .LIB to +.REL and exit
/R Rename - Rename .LIB to . REL

module::=module name {+ or - number }

module sequence ::=

module | ..module | module.. | modulel..module2

file specification::=filename {<module sequence> {,<module sequence>)

command: := {1ibrary filename=} ‘{list of file specifications}
{list of switches]

Microsoft Utility Software Page 31

SECTION 4

Operating Systems

This section dcescribes the use of MACRO-80 and LINK-80 under
the different disk operating systems. The examples shown in
this section assume that the FORTRAN-80 compiler is in use.
1f you are using the COBOL-80 compiler, substitute "COBOL"
wherever "F80" appears, and substitute the extension ".COB"
wherever ".FOR" appears.

4.1 CPM

Create a Source File

Create a source file using the CPM editor.
Filenames are up to eight characters long, with
3-character extensions, FORTRAN-80 source
filenames should have the extension FOR, COBOL-80
source filenames should have the extension COB, and
MACRO-80 source filenames should have the extension

MAC.

Compile the Source File

Before attempting to compile the . program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the mnecessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

A>F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any

syntax errors.

To compile the source file and produce an object
and listing file, type

A>F80 MAX1,MAX1=MAX1

or
A>F80 =MAX1/L

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

Loading, Executing and Saving the Program (Using

LINK-80)
To load the program into memory and execute 1it,

type

Microsoft Utility Software Page 32

A>L80 MAX1/G

To exit LINK-80 and save the memory image (object
code), type

A>L80 MAX1/E,MAX1/N

When LINK-~80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 401A 48]

If you wish to use the CPM SAVE command to save a
memory image, the number of pages used is the
argument for SAVE. For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, wunless
program execution will actually begin at
100H.

.

An object code file has now been saved on the disk
under the name specified with /N or SAVE (in this
case MAX1). To execute the program simply type the
program name

A>MAX1

CPM - Available Devices

A:, B:, C:, D: disk drives

HSR: high speed reader
LST: line printer
TTY: Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 object file
REL relocatable object file
PRN listing file

COM absolute file

Microsoft Utility Software Page 33

CPM Command Lines

CPM command lines and files are supported; i.e., a
CQBOL—SO, FORTRAN-80, MACRO-80 or LINK=-80 command
line may be placed in the same line with the CPM
run command. For example, the command

A>DF80 =TEST

causes CPM to load and run the FORTRAN-80 compiler,
which then compiles the program TEST.FOR and
creates the- file TEST.REL. This is equivalent to
the following series of commands:

A>F80
*=TEST
*AC

A>

4,2 DTC Microfile

Create a Source File

Create a source file wusing the DTC editor.
Filenames are up to five characters long, with
1-character extensions. COBOL-80, FORTRAN-80 and
MACRO-80 source filenames should have the extension
T.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

*F80 ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

*F80 MAX1,MAX1=MAX1

or
*F80 =MAX1/L/R

The compiler will create a relocatable file <called
MAX1.0 and a listing file called MAX1.L.

Loading, Executing and Saving the Program (Using

LINK-80) :
To load the program into memory and execute 1it,

Microsoft Utility Software Page 34

type
*L80 MAX1/G

To save the memory image (object code), type
*L80 MAXI1/E

which will exit from LINK-80, return to the DOS
monitor and print three numbers: the starting
addressfor execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C 401A 48]

Use the DTC SAVE command to save a memory image.
For example

*SA MAX1 2800 401A 2800

2800H (24000Q) is the load address used by the DTC
Operating System. '

NOTE

If a /P:<address> or /D:<address> has been
included in the loader command to specify
an origin other than the default, (2800H),
make sure the low address in the SAVE
command is the same as the start address of
the program.

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type

*RUN MAX1

DTC Microfile = Available Devices

DO:, D1;, D2:, D3: disk drives
TTY: Teletype or CRT
LIN: communications port

DTC Disk Filename Standard Extensions

T COBOL-80, FORTRAN-80 or
MACRO-80 source file
0 relocatable object file

L listing file

Microsoft Utility Software Page 35

DTC Command Lines
DTC command lines are supported as described in
Section 4.1, CPM Command Lines.

4.3 Altair DOS

Create a Source File
Create a source file using the Altair DOS editor.
The name of the file should have four characters,
and the first character must be a letter. For
example, to create a file called MAX1, initialize

DOS and type

EDIT MAX1
The editor will respond

CREATING FILE
00100

Enter the program. When you are finished entering
and editing the program, exit the editor.

Compile the Source File
Load the compiler by typing

.F80
The compiler will return the prompt character "*".

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

* =&MAX1.

(The editor stored the program as &MAX1) Typing
,=&MAX1. compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

*MAX 1R, &MAX1=&MAX1.

The compiler will create a REL (relocatable) file
called MAX1RREL and a listing file called &MAX1LST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

Microsoft Utility Software Page 36

After the source file has been compiled and a
prompt has been printed, exit the compilgr. If the
computer uses interrupts with the terminal, type
Control C. If not, actuate the RESET switch on the
computer front panel. Either action will return

control to the monitor.

Using LINK-80
Load LINK-80 by typing

.L80

LINK-80 will respond with a "*" prompt. Load the
program into memory by entering the name of the
program REL file

*MAX1R

Executing and Saving the Program

Now you are ready to either execute the program
that 1is 1in memory or save a memory image (object
code) of the program on disk. To execute the
program, type

*/G
To save the memory image (object code), type
* /E

which will exit from LINK-80, return to the DOS
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[26301 44054 35]

Use the DOS SAVE command to save a memory image.
Type

.SAV MAX1 0 17100 44054 26301

17100 is the load address used by Altair DOS for
the floppy disk. (With the hard disk, use 44000.)

An object code file h[s now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type the program name

«MAX1

Microsoft Utility Software Page 37

Altair DOS - Available Devices

FO;, F1:, F2:, <., disk drives
TTY: Teletype or CRT

Altair DOS Disk Filename standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 source file
REL . relocatable object file
LST listing file

Command Lines
Command lines are not supported by Altair DOS.

4.4 ISIS-II

Create a Source File

Create a source file using the ISIS-1I1 editor.
Filenames are Uup to six characters long, with
3-character extensions. FORTRAN-80 source
filenames should have the extension FOR and
COBOL-80 source filenames should have the extension
COB. MACRO-80 source filenames should have the

extension MAC.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it 1is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

-F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or 1isting file. 1f
necessary, return to the editor and correct any

syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type

-F80 MAX1,MAX1=MAX1
or
-F80 =MAX1/L/R

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Microsoft Utility Software Page 38

Loading, Saving and Executing the Program (Using
LINK-§8$

To load the program into memory and execute it,
type

~-L80 MAX1/G
To save the memory image (object code), type
-L80 MAX1/E,MAX1/N

which will exit from LINK-80, return to the ISIS~II
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[210C 401A 48]
An object code file has now been saved on the disk
under the name specified with /N (in this case

MAX1).

ISIS-II - Available Devices

FO:, F1:, F2:, ... disk drives
TTY: Teletype or CRT
LST: line printer

ISIS-II Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 source file
REL - relocatable object file
LST listing file

IS5IS-I1 Command Lines
ISIS-II command lines are supported as described in
Section 4.1, CPM Command Lines.

Storage Urnit « .« « . . 19, 21, 37

Subprogram 35, 51, 77, 83-91, 96
SUBROUTINE . .« 32, 35, 51, 77, 84-88
Subscript 18, 25

Subscript Expression . 19, 25

TYPE® + « ¢ « o o o o o« « « « » 33, 91
Unformatted I/0 56
Vvariable . . « . ¢« ¢« « ¢« . . . 12, 38, 36, 85

WRITE« .« . . . 55-56, 61, 78, 73-76

